
aramısı

DEVELOPMENT PROCESSES I TOOLS I PLATFORMS FOR SAFETY-CRITICIAL MULTICORE SYSTEMS

Efficient Toolchain for Multicore Processors on Aircraft Engine Controls

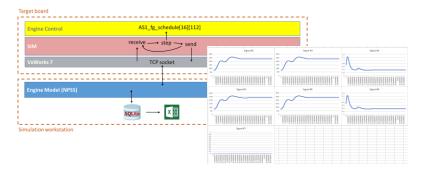
SPONSORED BY THE

Dr. Alexander Walsch, GE Aviation

DEVELOPMENT PROCESSES I TOOLS I PLATFORMS FOR SAFETY-CRITICIAL MULTICORE SYSTEMS

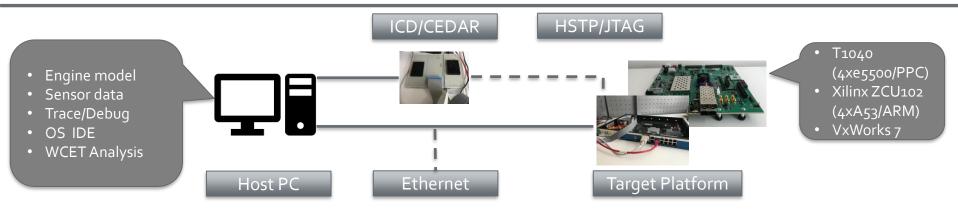
GE Aviation

A leading provider of jet engines, systems and services


6/22/2018

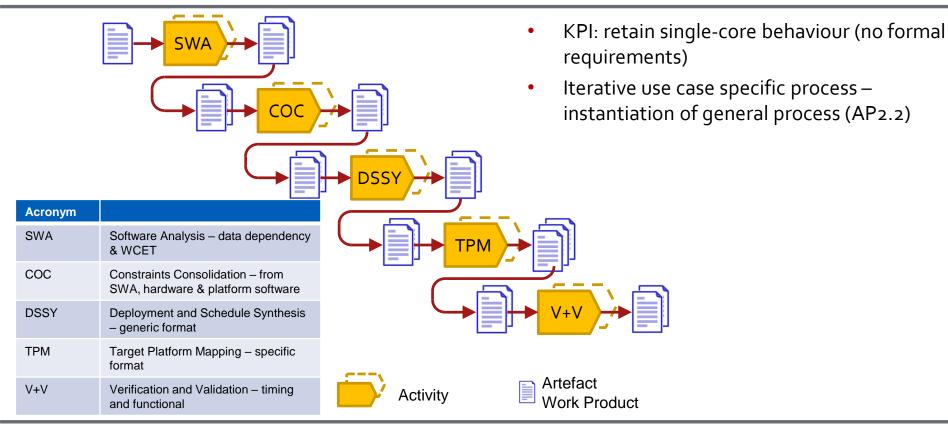
Efficient Toolchain for Multicore Processors on Aircraft Engine Controls | ARAMIS II Multicore Konferenz, Stuttgart | Dr. A. Walsch

Use Case (WP 5.4B) Starting Point


- Aircraft Engine Control Software (ECS) abstracted product code
- Self-contained single-core generic aviation application that can be run in a PiL (lab ping-pong)/HiL (test rig FADEC) environment
- Available as C code (SCADE KCG generated)
- DO-178C Level A rated software

- 129 subsystems (main control functions),
 LOC ~150.000
- Cyclic IMA-like static schedule (MIF, MAF). Known execution order on single core
- Validation criteria based on PiL transients

Demonstrator Setup



🐑 WCET Analysis Manag	er						
<u>File</u> <u>H</u> elp							
Trace32 Home:	D:\TRACE32\WORK\SIM_Middleware3			T32 Cmd			
VxWorks Kernel:	D:\TRACE32\WORK\SIM_Middleware3\VxWorks\vxWorks			T32 Script	Select a scri	pt	•
VxWorks Application:	D:\TRACE32\WORK\SIM_Middleware3\Application\SIM_Middleware.vxe						
						Breakpoints	Trace Format
Start AbsLM		Launch Time <u>W</u> eaver			setBreak	NEXUS	
	Stop AbsLM	Start TimeWeaver Analysis			N2SpeedConv	SASCII (Extended)	
	Launch Lauterbach Launch VxWorks					O User Script	ASCII (Normal)
Timeweaver Project: D.\Timeweaver\WORK\SIM_Middleware3\SIM_Middleware.apx						Launch Teraterm	Launch NPSS
Launch Teraterm WCET							
Vently Sources Init T32 Attach Pigg UBoot Reset CPU Go CPU							
Start WCET Analysis							
Stop Activity							
Clear Console Log					Save W	CET Analysis Log on exit	QK Qlose

- Demonstrator Automation
 - Automation of closed loop PiL setup
 - Acquisition of platform data (traces) and engine model transient response
 - WCET analysis
 - Parameter changes (planned)

Process

6/22/2018

Data Dependency Analysis

DEVELOPMENT PROCESSES | TOOLS | PLATFORM FOR SAFETY-CRITICIAL MULTICORE SYSTEMS

- Different tools for data dependency analysis are currently investigated
- Instead of using the ECS a smaller subset (ECS_Example) is used (8 subsystems, same data sharing mechanism as ECS, known data dependency, different behavior) AutoAnalyze
- Static data dependency analysis
- Automotive tool (AUTOSAR) with no native C input. Preprocessing stage (under development) needed

Universitä Augsburg

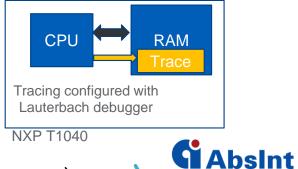
Preprocessing stage could be replaced by

Gropius

Albrechts-Universität zu Kiel

- Static analysis (abstract interpretation)
- Native C input
- First results look promising. Work in progress. ٠

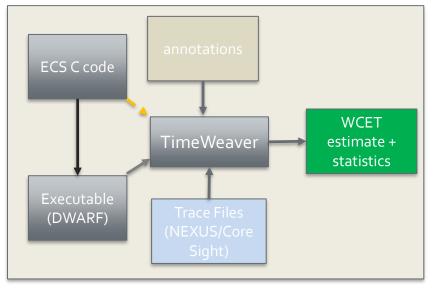
- SI X SILEXICA
- Static and dynamic analysis
- First results on static analysis available soon. Work in progress.


DEVELOPMENT PROCESSES I TOOLS I PLATFORMS FOR SAFETY-CRITICIAL MULTICORE SYSTEMS

WCET Analysis

 Need for an efficient (no source code instrumentation, minimized rig/test bed time) method that supports complex

processors


• Short term: intrusive

 Long term (~Q1 2019) non-intrusive

Zynq US+

- First results on ECS promising
- Expected speed-up: O (weeks) -> O(hours)
- NDA with AbsInt in place

Deployment and Schedule Synthesis

- Deployment and schedule synthesis based on constraints
 - Data dependency between subsystems (atomic units)
 - WCET of subsystems
 - Hardware (interference channels/CAST-32A)
 - Platform software (OS specific)
- Correctness by construction principle (plannable deterministic system)
- Static schedule, run to completion (no preemption)


ASSIST 2.4:

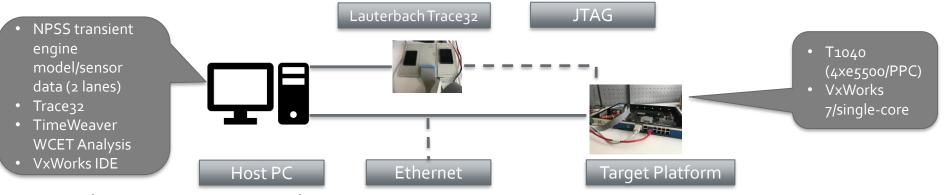
• Valid search based solution (constraint programming)

• Investigated with ECS_Example. Work in progress.

Solution 1 of 10 Tabular View Topology View ECS_Example Compl. Bool Bool Bool Bool Bool Bool Bool Compl. Co

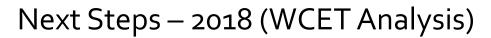
aramı

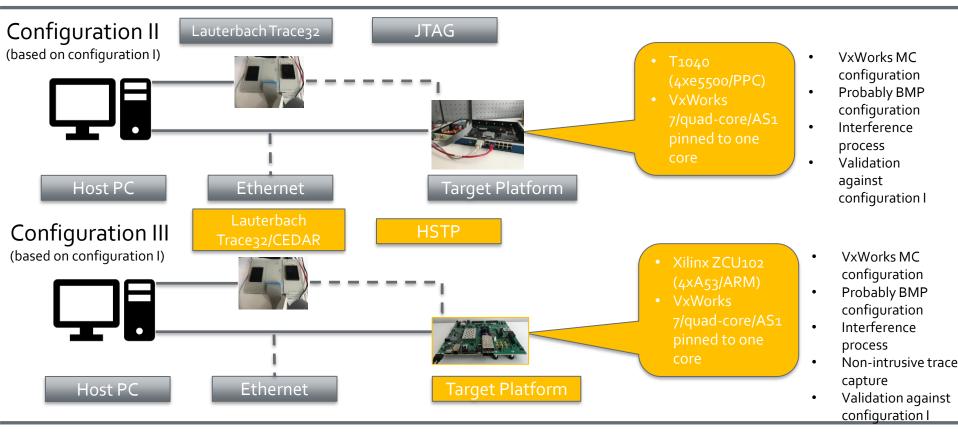
DEVELOPMENT PROCESSES I TOOLS I PLATFORM


af3:

- Optimized solution (based on SMT solver)
- Will be looked at after ASSIST

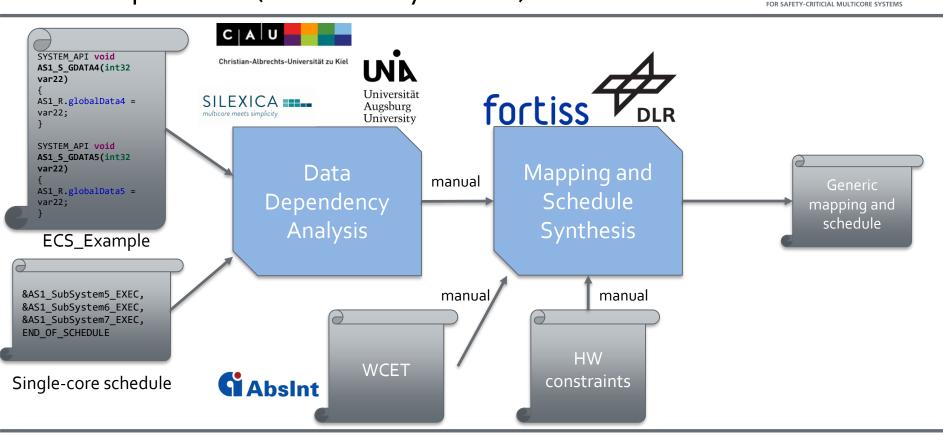
fortiss

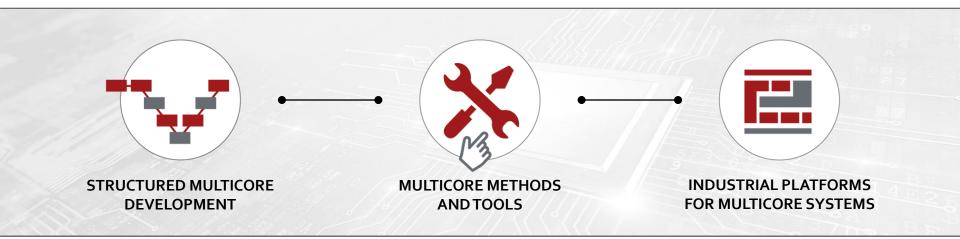

Configuration I



- Single-core setup (VxWorks)
- ECS runs closed loop/30 seconds simulated time
- Traces stored in target RAM (16 MB)/intrusive
- Download via JTAG/NEXUS format
- TimeWeaver analysis

- 129 subsystems take ~30 min
- Results are currently evaluated and problems resolved (7 subsystems fail)
- Evaluation based on different WCET analysis solution





Next Steps - 2018 (Schedule Synthesis)

ENTWICKLUNGSPROZESSE I WERKZEUGE I PLATTFORMEN FÜR SICHERHEITSKRITISCHE MULTICORESYSTEME

Thank you for your attention!

alexander.walsch@ge.com

GE Aviation