SCHAEFFLER

and Research

DEVELOPMENT PROCESSES I TOOLS I PLATFORMS
FOR SAFETY-CRITICIAL MULTICORE SYSTEMS

E-Mobility goes Multicore

Building Generic Motor-Control Systems by Architectural Design Methods and Static Analysis

Arnd Leitner, LuK GmbH & Co. KG (Schaeffler Gruppe), Bühl

Background and Use Case

- Schaeffler develops different E-mobility products based on a common HW platform and motor control library
- AUTOSAR architecture
- Model-based development (Matlab/Simulink, Targetlink)
- High requirements on functional safety (ASIL-C/D)

Challenges

- Short development time for new e-drive projects
- Motor control library developed fully generic and HW-agnostic
- Projects choose different HW (μ C) variants and have specific requirements on safety, i.e. spatial and temporal isolation
- Add-on SW functions vary from project to project, e.g.
 - >1 motor control
 - OEM SW
 - additional safety supervisions
 - other functions

Current Approach

- 1. Manual distribution and architecture design
- Implementation
- 3. Measurements of resource consumptions

We have a Dream...

- Good estimate of the performance of the system already in the early design phase
- Have a tool set to optimize the design without the need to do implementation cycles

General Approach

High-level system architecture model

Deployment of SW components

Static analysis on code level

Platform-specific code deployment

DEVELOPMENT PROCESSES | TOOLS | PLATFORMS

Concept for Tool Flow

High-level System Architecture Model

- Available HW-resources
- Description of SW-components with their resource requirements
- Safety requirements (isolation requirements)

Model based on AMALTHEA metamodel

Deployment of SW Components

- Determine if the available HW resources are able to satisfy the resource and safety requirements of the SW components
- Mapping and scheduling for all SW components is constructed

Constraint solver of ASSIST toolsuite is used

Results can be exported as system configuration files

Static Analysis on Code Level

Avoid memory violations by applying a static code anlysis tool (here:

AbsInt Astrée)

Variable and data structures are classified

- function-local data
- thread-local data
- thread-global data
- core-local data
- core-global data.
- With this input and the system architecture and configuration, memory protection realms are created

Platform-specific Code Deployment

- Isolated "OS applications" which are separated by a Memory Protection Unit (MPU) are defined
- Now all variables can automatically be mapped to physical memories

Final result is a memory-optimized deployment and binary code

Status

Benefits of the Concept

- It enables hardware-independent software development via generic application libraries ("Motor Control Platform").
- It forces application designers into stating explicit requirements regarding temporal and spatial resource partitioning (assignment of CPU-time and memory-usage budgets).
- Freedom from interference concepts can be included in the partitioning analyses.
- Semi-automated spatial and temporal isolation by semantic program analyses is possible.

Next Steps

- Extension of the used tools is ongoing
- Tool flow will be stepwise applied to the automotive E-drive use case

- Timing and WCET issues will be tackled next
 - AbsInt's TimeWeaver (amongst others) will be employed

Thank you for your attention!

Arnd Leitner LuK GmbH & Co KG